Saturday, 22 February 2014

newton's gravity: একজন কাপুরুষের কাহিনী

newton's gravity: একজন কাপুরুষের কাহিনী: তাকে আর কিই বা বলা যায়?  সে যে কাপুরুষ।  তা কি আর আজ থেকে?  সেই অনেক দিন আগে, যেদিন তারই সামনে তার বন্ধুটি অ্যাক্সিডেন্ট করল, কী করল স...

একজন কাপুরুষের কাহিনী



তাকে আর কিই বা বলা যায়?
 সে যে কাপুরুষ।
 তা কি আর আজ থেকে?
 সেই অনেক দিন আগে, যেদিন তারই সামনে
তার বন্ধুটি অ্যাক্সিডেন্ট করল,
কী করল সে? পালিয়ে গেল। কেন?
হয়ত ভয় পেয়েছিল, হয়ত তার মা না করেছিল
এসব ঝামেলায় না জড়াতে অথবা সে নিতান্তই  একটা কাপুরুষ।

সেই ঘটনার আরও অনেক পরে,
সবে মাত্র নাইনে পড়ত সে।
একটি মেয়ে ছিল, ”বৃষ্টি
পছন্দ করত সে মেয়েটিকে।
মেয়েটিও পছন্দ করত তাকে।কিন্ত
মুখ ফুটে কিছুই বলেনি তকে। কারণ
ছেলেরাই তো আগে বলে;
ছেলেটি, সে তো কাপুরুষ, সে আর কী বলবে?
হয়ত সে লজ্জা পেয়েছিল, হয়ত
তার সাথ দেয়ার ছিলনা কেউ , অথবা
সে আসলেই একটা কাপুরুষ।

কিছুদিন পর
মেয়েটিকে হারিয়ে, নতুন জায়গায় এল সে
নতুন জায়গা, বন্ধু পুরাতন।
বন্ধুটি একটি মেয়েকে পছন্দ করত;
সবকিছু ঠিকঠাক, শুধুমাত্র বলার বাকি;
বন্ধুটির সাথেও কেউ নেই, তাই তাকে নিল সাথে।
কিন্তু কী করল সে? বন্ধুটিকে একা ছেড়ে দিল।
এতগুলো মেয়ের সামনে অপমানিত হল বন্ধুটি।
কিন্তু কেন? কারন, একজন কাপুরুষ ছিল
তার সঙ্গী।
এইভাবে কাপুরুষের কাপুরুষতা চলতে থাকে,
কিন্তু কেন? কারণ
সে যে নিতান্তই এক কাপুরুষ, কাপুরুষদের সমাজে.....

একজন কাপুরুষের কাহিনী

তাকে আর কিই বা বলা যায়?
 সে যে কাপুরুষ।
 তা কি আর আজ থেকে?
 সেই অনেক দিন আগে, যেদিন তারই সামনে
তার বন্ধুটি অ্যাক্সিডেন্ট করল,
কী করল সে? পালিয়ে গেল। কেন?
হয়ত ভয় পেয়েছিল, হয়ত তার মা না করেছিল
এসব ঝামেলায় না জড়াতে অথবা সে নিতান্তই  একটা কাপুরুষ।

সেই ঘটনার আরও অনেক পরে,
সবে মাত্র নাইনে পড়ত সে।
একটি মেয়ে ছিল, ”বৃষ্টি”।
পছন্দ করত সে মেয়েটিকে।
মেয়েটিও পছন্দ করত তাকে।কিন্ত
মুখ ফুটে কিছুই বলেনি তকে। কারণ
ছেলেরাই তো আগে বলে;
ছেলেটি, সে তো কাপুরুষ, সে আর কী বলবে?
হয়ত সে লজ্জা পেয়েছিল, হয়ত
তার সাথ দেয়ার ছিলনা কেউ , অথবা
সে আসলেই একটা কাপুরুষ।

কিছুদিন পর
মেয়েটিকে হারিয়ে, নতুন জায়গায় এল সে
নতুন জায়গা, বন্ধু পুরাতন।
বন্ধুটি একটি মেয়েকে পছন্দ করত;
সবকিছু ঠিকঠাক, শুধুমাত্র বলার বাকি;
বন্ধুটির সাথেও কেউ নেই, তাই তাকে নিল সাথে।
কিন্তু কী করল সে? বন্ধুটিকে একা ছেড়ে দিল।
এতগুলো মেয়ের সামনে অপমানিত হল বন্ধুটি।
কিন্তু কেন? কারন, একজন কাপুরুষ ছিল
তার সঙ্গী।
এইভাবে কাপুরুষের কাপুরুষতা চলতে থাকে,
কিন্তু কেন? কারণ
সে যে নিতান্তই এক কাপুরুষ, কাপুরুষদের সমাজে.....

Wednesday, 11 December 2013

newton



Isaac Newton compared the acceleration of the moon to the acceleration of objects on earth. Believing that gravitational forces were responsible for each, Newton was able to draw an important conclusion about the dependence of gravity upon distance. This comparison led him to conclude that the force of gravitational attraction between the Earth and other objects is inversely proportional to the distance separating the earth's center from the object's center. But distance is not the only variable affecting the magnitude of a gravitational force. Consider Newton's famous equation
Fnet = m • a
Newton knew that the force that caused the apple's acceleration (gravity) must be dependent upon the mass of the apple. And since the force acting to cause the apple's downward acceleration also causes the earth's upward acceleration (Newton's third law), that force must also depend upon the mass of the earth. So for Newton, the force of gravity acting between the earth and any other object is directly proportional to the mass of the earth, directly proportional to the mass of the object, and inversely proportional to the square of the distance that separates the centers of the earth and the object.
But Newton's law of universal gravitation extends gravity beyond earth. Newton's law of universal gravitation is about the universality of gravity. Newton's place in the Gravity Hall of Fame is not due to his discovery of gravity, but rather due to his discovery that gravitation is universal. ALL objects attract each other with a force of gravitational attraction. Gravity is universal. This force of gravitational attraction is directly dependent upon the masses of both objects and inversely proportional to the square of the distance that separates their centers. Newton's conclusion about the magnitude of gravitational forces is summarized symbolically as
http://www.physicsclassroom.com/class/circles/u6l3c1.gif
Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases. If the mass of one of the objects is doubled, then the force of gravity between them is doubled. If the mass of one of the objects is tripled, then the force of gravity between them is tripled. If the mass of both of the objects is doubled, then the force of gravity between them is quadrupled; and so on.
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases. If the separation distance between two objects is doubled (increased by a factor of 2), then the force of gravitational attraction is decreased by a factor of 4 (2 raised to the second power). If the separation distance between any two objects is tripled (increased by a factor of 3), then the force of gravitational attraction is decreased by a factor of 9 (3 raised to the second power).
The proportionalities expressed by Newton's universal law of gravitation are represented graphically by the following illustration. Observe how the force of gravity is directly proportional to the product of the two masses and inversely proportional to the square of the distance of separation.
http://www.physicsclassroom.com/class/circles/u6l3c2.gif

Another means of representing the proportionalities is to express the relationships in the form of an equation using a constant of proportionality. This equation is shown below.
http://www.physicsclassroom.com/class/circles/u6l3c3.gif
The constant of proportionality (G) in the above equation is known as the universal gravitation constant. The precise value of G was determined experimentally by Henry Cavendish in the century after Newton's death. (This experiment will be discussed later in Lesson 3.) The value of G is found to be
G = 6.673 x 10-11 N m2/kg2
The units on G may seem rather odd; nonetheless they are sensible. When the units on G are substituted into the equation above and multiplied by m1• m2 units and divided by d2 units, the result will be Newtons - the unit of force.

Knowing the value of G allows us to calculate the force of gravitational attraction between any two objects of known mass and known separation distance. As a first example, consider the following problem.
Sample Problem #1
Determine the force of gravitational attraction between the earth (m = 5.98 x 1024 kg) and a 70-kg physics student if the student is standing at sea level, a distance of 6.38 x 106 m from earth's center.
The solution of the problem involves substituting known values of G (6.673 x 10-11 N m2/kg2), m1 (5.98 x 1024 kg), m2 (70 kg) and d (6.38 x 106 m) into the universal gravitation equation and solving for Fgrav. The solution is as follows:
http://www.physicsclassroom.com/class/circles/u6l3c4.gif

Sample Problem #2
Determine the force of gravitational attraction between the earth (m = 5.98 x 1024 kg) and a 70-kg physics student if the student is in an airplane at 40000 feet above earth's surface. This would place the student a distance of 6.39 x 106 m from earth's center.
The solution of the problem involves substituting known values of G (6.673 x 10-11 N m2/kg2), m1 (5.98 x 1024 kg), m2 (70 kg) and d (6.39 x 106 m) into the universal gravitation equation and solving for Fgrav. The solution is as follows:
http://www.physicsclassroom.com/class/circles/u6l3c5.gif

Two general conceptual comments can be made about the results of the two sample calculations above. First, observe that the force of gravity acting upon the student (a.k.a. the student's weight) is less on an airplane at 40 000 feet than at sea level. This illustrates the inverse relationship between separation distance and the force of gravity (or in this case, the weight of the student). The student weighs less at the higher altitude. However, a mere change of 40 000 feet further from the center of the Earth is virtually negligible. This altitude change altered the student's weight changed by 2 N that is much less than 1% of the original weight. A distance of 40 000 feet (from the earth's surface to a high altitude airplane) is not very far when compared to a distance of 6.38 x 106 m (equivalent to nearly 20 000 000 feet from the center of the earth to the surface of the earth). This alteration of distance is like a drop in a bucket when compared to the large radius of the Earth. As shown in the diagram below, distance of separation becomes much more influential when a significant variation is made.
http://www.physicsclassroom.com/class/circles/u6l3c6.gif

The second conceptual comment to be made about the above sample calculations is that the use of Newton's universal gravitation equation to calculate the force of gravity (or weight) yields the same result as when calculating it using the equation presented in Unit 2:
Fgrav = m•g = (70 kg)•(9.8 m/s2) = 686 N
Both equations accomplish the same result because (as we will study later in Lesson 3) the value of g is equivalent to the ratio of (G•Mearth)/(Rearth)2.


The Universality of Gravity
Gravitational interactions do not simply exist between the earth and other objects; and not simply between the sun and other planets. Gravitational interactions exist between all objects with an intensity that is directly proportional to the product of their masses. So as you sit in your seat in the physics classroom, you are gravitationally attracted to your lab partner, to the desk you are working at, and even to your physics book. Newton's revolutionary idea was that gravity is universal - ALL objects attract in proportion to the product of their masses. Gravity is universal. Of course, most gravitational forces are so minimal to be noticed. Gravitational forces are only recognizable as the masses of objects become large. To illustrate this, use Newton's universal gravitation equation to calculate the force of gravity between the following familiar objects. Click the buttons to check answers.

Mass of Object 1
(kg)
Mass of Object 2
(kg)
Separation Distance
(m)
Force of Gravity
(N)

a.
Football Player
100 kg
Earth
5.98 x1024 kg
6.38 x 106 m
(on surface)

b.
Ballerina
40 kg
Earth
5.98 x1024 kg
6.38 x 106 m
(on surface)

c.
Physics Student
70 kg
Earth
5.98 x1024 kg
6.60 x 106 m
(low-height orbit)

d.
Physics Student
70 kg
Physics Student
70 kg
1 m

e.
Physics Student
70 kg
Physics Student
70 kg
0.2 m

f.
Physics Student
70 kg
Physics Book
1 kg
1 m

g.
Physics Student
70 kg
Moon
7.34 x 1022 kg
1.71 x 106 m
(on surface)

h.
Physics Student
70 kg
Jupiter
1.901 x 1027 kg
6.98 x 107 m
(on surface)


Today, Newton's law of universal gravitation is a widely accepted theory. It guides the efforts of scientists in their study of planetary orbits. Knowing that all objects exert gravitational influences on each other, the small perturbations in a planet's elliptical motion can be easily explained. As the planet Jupiter approaches the planet Saturn in its orbit, it tends to deviate from its otherwise smooth path; this deviation, or perturbation, is easily explained when considering the effect of the gravitational pull between Saturn and Jupiter. Newton's comparison of the acceleration of the apple to that of the moon led to a surprisingly simple conclusion about the nature of gravity that is woven into the entire universe. All objects attract each other with a force that is directly proportional to the product of their masses and inversely proportional to their distance of separation.


Investigate!
Use the Newton's Law of Universal Gravitation widget below to investigate the effect of the object masses and separation distance upon the amount of gravitational attraction. Enter the masses of the two objects and their separation distance. Then click the Submit button to view the gravitational force. Experiment with various values of mass and distance.

Newton's Law of Universal Gravitation


Top of Form
Mass of Object 1

m1=
kg
Mass of Object 2

m2=
kg
Separation Distance

d=
m


Submit


See http://www.physicsclassroom.com/Class/circles/U6L3c.cfm.
Bottom of Form